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Abstract 

Landslide inventory data sets are required for any landslide susceptibility mapping and 

prediction approaches. However, generating accurate landslide inventory data sets 

depends on applied methods and quality of input data, for example spatial resolution for 

satellite imagery. Therefore, the accuracy and availability of inventories vary in different 

studies. This study evaluated a strategy of sudden landslide identification product (SLIP) for 

landslide detection using Bi-Temporal Sentinel 2 Imagery and ALOS Digital Elevation Model 

(DEM). The resulting landslide detection map was then compared with an improved version 

of SLIP based on a fuzzy overlay. The resulting probability map was classified into three 

classes using the natural breaks method; the third class with the highest probability was 

extracted as the final map. The accuracy assessment stage demonstrated that using the 

improved version increased the accuracy by 16% compared to the SLIP method.   

Keywords: earth observation, sudden landslide identification product (SLIP), Sentinel 2 

1 Introduction  

Landslides are the most dangerous and unpredictable natural hazards that usually result in 
severe destructions, damaging natural resources, and loss of human life and property (Hölbling 
et al., 2015). They occur in different types, frequencies, and intensities worldwide (Ngo et al, 
2020 and Ghorbanzadeh et al., 2019A). Seeking suitable solutions to prevent and mitigate its 
calamitous consequences is, therefore, a high priority for society. Recent advances in remote 
sensing, increasing availability of Earth observation data, and progress in semi-automated and 
automated techniques enable the monitoring and analysis of large areas. In this regard, many 
machine learning (ML) methods and procedures have been developed and applied for landslide 
inventory mapping from different satellite imageries (Ghorbanzadeh et al., 2019B and 
Ghorbanzadeh et al., 2020). The ML methods are categorized into two main groups of 
supervised and unsupervised techniques (Mou et al., 2017). In supervised methods and model 
selection, the training dataset plays a vital role in mapping landslides, and the performance and 
accuracy of the model have a strong correlation with the quantity and quality of training data 
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(Ghorbanzadeh et al., 2020 and Hölbling 2012). In the unsupervised methods, pixels that share 
similar spectral characteristics are grouped as a cluster, and the similarity threshold is usually 
defined by the user (Tran et al., 2019). The standard unsupervised methods are K-means 
clustering or Interactive self-organization data analysis (ISODATA) (Karami et al., 2015 and 
Abburu et al., 2015). Although they are easy to apply and do not require any labelled data for 
classification and clustering data, their resulting classification accuracy is usually lower than 
supervised approaches.  

For the case of bi-temporal images, some techniques, including image differencing, normalized 
difference vegetation index (NDVI), change vector analysis (CVA), spectral features variance, 
and image rationing has been applied for land surface change detection and landslide detection 
in particular (Vázquez-Jiménez et al., 2018, Ramos-Bernal et al., 2018 and Solano-Correa et 
al., 2018). In these techniques, mapping land surface changes or deformation caused by 
landslide phenomena is more achievable, but selecting the optimal thresholds to classify or 
separate change from no-change is still a challenge (Panuju et al., 2020).  

In this study, we followed a sudden landslide identification product (SLIP) strategy to 
overcome the thresholding issue for landslide detection using bi-temporal images. SLIP 
combines multiple related spectral channels from bi-temporal images to estimate landscape 
changes. In this regard, we examined image indices such as red change (Fayne et al., 2019) and 
modified normalized multiband drought index (mNMDI) and fuzzy overlay to automatically 
detect and classify landslides without introducing any thresholds to data.  

2 Study area   

The chosen study area for this investigation is Eastern Iburi, which is in Hokkaido, Japan (see 
figure 1). On September 6th, 2018, an earthquake struck Eastern Iburi with a magnitude of 
6.6 (Mw), resulting in the deaths of 41 people; 36 of the victims were perished by landslides 
(Yamagishi et al., 2018). Nearly 5600 landslides, primarily shallow, were caused by the 
earthquake equal to an area of 46.3 km2. However, the main reason for such a copious number 
of landslides was that the day before the earthquake, typhoon Jebi brought torrential rainfalls 
into the region, making the area highly susceptible to landslides (Osanai et al., 219). A landslide 
inventory map in this region is generated by the Geographical Survey Institute (GSI) of Japan. 
It is used as a perfect reference map to evaluate the accuracy of our method in landslide 
detection. More details on the landslide inventory map are available in Zhang et al., 2019. 
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Figure 1: The location of our case study area of Eastern Iburi in Hokkaido, Japan. Pre and post landslide 

Sentinel-2 images are presented by the band combination 8-4-3 (NIR, Red, Green). 

3 Data and methodology 

In this study, Sentinel 2A images were acquired for dates before and after the landslide event. 
Based on the SLIP method, we used a stack of five images that had cloud cover less than 10% 
for both the pre-landslide image and post-landslide image. Before using these datasets for 
landslide mapping, Sen2Cor (Main-Knorn et al., 2017) plugin, which is available for SNAP 
software, was used to apply atmospheric corrections. Besides, since the slope is an essential 
factor in detecting landslides (Ghorbanzadeh et al., 2019B), we used 12-meter ALOS Digital 
Elevation Model to generate a slope layer used with satellite images. Sentinel 2A images 
include 13 bands with a spatial resolution ranging from 10 to 60 meters. Furthermore, all 
images and slope layers were resampled to 10-meter resolution in QGIS software for further 
analysis.  

3.1  Sudden Landslide Identification Product (SLIP) 

The research methodology established based on a change detection algorithm called SLIP 

proposed by Fayne, et al. (2019) utilizes Landsat-8 multispectral images and elevation data 
from the Shuttle Radar Topography Mission to detect landslides. In SLIP there are two crucial 
indices called Red Change and Normalized Multiband Drought Index (NMDI) that directly 
impact detecting landslides. The former index calculates the ratio of changes in Red bands 
(655 nm) in pre and post landslide images, expressed as equation 1, to map soil exposure. The 
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latter index is mainly used for measuring drought and flood conditions. It is sensitive to soil 
moisture and vegetation [15], making it an ideal tool to evaluate and map soil moisture changes. 
NMDI (Equation 2) is firstly created for MODIS multispectral data, but its performance was 
reported insufficient for landslide detection tasks; the authors modified (Equation 3 to be 
applicable) on Landsat-8 data for landslide detection. For Red change index, areas with more 
than a 40% increase in red reflectance were labelled as one and areas below the threshold were 
marked as zero. Also, mNMDI was calculated for pre and post landslide images and then using 
Spectral Characteristics Viewer from the U.S. Geological Survey mNMDI maps converted to 
binary maps with soil moisture one and without soil moisture zero. By subtracting post and 
pre-binary mNMDI maps, a change detection map with values -1, 0, and 1 is created, and then 
all values less than one are labelled as zero. 

Red Change = 
(R655 𝑝𝑜𝑠𝑡 − R655 𝑝𝑟𝑒)

R655 𝑝𝑟𝑒
  * 100                                                                            (1) 

NMDI = 
(R 860𝑛𝑚−(R 1640𝑛𝑚−R 2130𝑛𝑚)

(R 860𝑛𝑚+(R 1640𝑛𝑚−R 2130𝑛𝑚)
                                                                               (2) 

mNMDI = 
(R 860𝑛𝑚−R 2200𝑛𝑚)

(R 860𝑛𝑚+R 2200𝑛𝑚)
                                                                             (3) 

Moreover, the slope is another essential factor that authors used for mapping landslides. In 
SLIP, the slope is reclassified between zero and three based on the susceptibility to landslide; 
the higher susceptivity, the higher value, and vice versa. The remaining areas with values close 
to three show a high probability of being landslide, and values less than two indicate no 
landslide. The selection of thresholds and reclassification in the SLIP case study was based on 
the study site's topographical and physical characteristics.  

3.2  Improved Sudden Landslide Identification Product (ISLIP) 

In this section, we introduce ISLIP as an enhanced version of SLIP for landslide detection. In 
SLIP, the Landsat-8 multispectral data is used, while in ISLIP, we use Sentinel-2 images bands 
that have a similar wavelength as Landsat-8 bands for indices such as Red Change and 
mNMDI. However, in SLIP, the Red Change index can have infinite values, but in our 
method, we standardized it (Equation 4) between 0 and 1. Furthermore, we calculated 
mNMDI using the similar Sentinel 2 bands, and in our case, the values ranged between -1 and 
1. The slope layer also was fuzzified between zero and one based on the vulnerability of 
landslide in our study area. To transform all layers into the same scale, we first subtracted pre-
landslide mNMDI from post-landslide mNMDI, then fuzzified simply using linear fuzzy 
membership in QGIS, values close to 1 allocated higher membership and vice versa. 

Modified Red Change = 
(R665 𝑝𝑜𝑠𝑡 − R665 𝑝𝑟𝑒)

(R665 𝑝𝑜𝑠𝑡+ R665 𝑝𝑟𝑒)
                                                        (4) 

To detect landslides without introducing any thresholds, “AND” fuzzy overlay operators were 
used to combining all three layers, and then using the natural break clustering method, overlay 
map clustered into three classes.         
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4 Results 

Represented in figure 2 are the resulting red change, pre and post landslide mNMDI indices, 
and mNMDI change map. According to the red change map (figure 2A), where landslides 
occurred, high positive values indicate changes from vegetation to bare soil due to landslide. 
For negative values, it shows the transformation from more minor moisturized areas to areas 
with high moisture like vegetation or water bodies. Moreover, in the pre-landslide mNMDI 
map (figure 2C), areas covered with dense vegetation show higher values, while low and 
negative values represent farms, bare lands, and dry soils. However, in the post-landslide 
mNMDI map (figure 2B), due to landslides and high soil exposure, the spatial distribution of 
values close to zero became frequent. Finally, in the change detection map (figure 2D), areas 
with more changes are associated with high positive values, and it is due to the subtraction of 
pre-landslide mNMDI from the post-landslide mNMDI map. Finally, the resulting map of 
applying the “AND” fuzzy operator on all three fuzzified inputs (Red Change, mNMDI 
change map, and slope) shows the probability of being a landslide ranges between zero and 
one; the higher values, the higher probability of being landslide. The output map is clustered 
into three classes, and the third class with the highest landslide probability was able to identify 
landslides with high accuracy. To compare our result with the SLIP method, we also mapped 
landslides using the SLIP method based on the procedure mentioned in [15], and pixels with 
values higher than 2.4 were selected as landslides. 

 
Figure 2: Spectral indices generated from Sentinel 2 images. Maps stand for (A) Red Change, (B) pre-

landslide mNMDI, (C) post-landslide mNMDI, (D) mNMDI change map, (E) detected landslides (using 

SLIP), (F) detected landslides (using ISLIP), and (G) inventory map. Also, Maps from A to D are non-

fuzzified layers and presented to indicate the indices change before and after landslide events. 

5 Accuracy assessment and discussion 

The resulting maps of areas detected as landslides were compared with the ground truth 
landslide inventory to calculate the precision accuracy assessment metric. The precision metric 
indicates the proportion of regions, which are correctly detected as landslide areas. 
Quantitative accuracy assessment using the landslide inventory map (figure 2, G) showed that 
ISLIP method could see landslides with an accuracy of 72%, while the SLIP method was 58% 
accurate. Therefore, the ISLIP has a better performance in landslide detection. One of the 
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factors that helped us achieve higher accuracy compared to the SLIP method is the higher 
spatial resolution of Sentinel-2A images.  

The ISLIP algorithm shows how freely available Sentinel 2A images can be used for automated 
and landslide detection. However, the applied algorithms' transferability on the other regions 
is still considered a limitation of this study. The algorithms map changes on the surface within 
areas with high slopes. Thus, the slope factor played an important role in identifying the 
landslides, and the wrong fuzzification of the slope factor can result in a systematic bias in 
detecting landslides. Also, these algorithms may not be demonstrating the same accuracy for 
the landslides that covered by vegetation after the event. 

6 Conclusions 

The applied SLIP and ISLIP could automatically detect landslides to reduce the amount of 
time needed to analyze satellite imagery manually. This algorithm examined a large area and 
could show an acceptable accuracy compared to the current supervised classification models, 
which can be considered a practical approach in landslide research. 
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